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Abstract

Assessing the 2wy, instability and other preheat considerations in ignition-scale
hohlraums

W.L. Kruer
University of CA, Davis
Nathan Meezan, Richard Town, David Strozzi,
Scott Wilks, Ed Williams, Don Meeker, and Larry Suter
Lawrence Livermore National Laboratory
S.P. Regan
Laboratory for Laser Energetics

In recent experiments’ Sean Regan, et. al. for the first time observed the 2wy instability
from window plasma in hohlraum targets. This instability can also operate? at peak power
near the edge of the inner beams in the ablator plasma and near the edge of the outer
beams in the liner plasma. Fortunately only a small fraction of the laser energy was
estimated to be at risk. A more quantitative assessment of the energy at risk at peak
power and its sensitivity to variations in target design and to details of the instability
threshold model will here be given. We also explore how strong collisionality restricts
this instability in the Au wall plasma. We show that the instability threshold can be
significantly reduced for laser beams with an angle of incidence of about 60 degrees due
to the swelling of the laser field near its turning point. A simple model is given. It is also
shown that for frequently cited plasma conditions, the SRS-scattered light wave can itself
drive the 2wy instability. This effect is relevant for the nonlinear saturation of SRS and
the resulting heated electron generation. Some estimates are given. Finally several
important issues concerning the high-energy electron distributions due to the 2wy
instability and other laser plasma processes are discussed.

1.S. P. Regan et. al. (submitted to Phys. Rev. Letters)
2. W. L. Kruer. Paper Po6, 37" Anomalous Absorption Conference (2007)

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344
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Summary @
N

* Why look at the 2w, instability in ignition-scale hohlraums?
(gradient and collisional thresholds/ intensity swelling for
obliquely incident light/ hot electrons and preheat)

* Recent experimental feedback on the 2w, instability
(direct drive experiments/ window hot electrons in hohlraums-
S. Regan et. al.)

* The energy at risk to the 2w, instability at other times and
places in hohlraums is being assessed.

* New nonlinear physics: sometimes the Raman-scattered light
can excite the 2w, instability.

* Some preheat considerations: strong dependence on T, ;
energy distribution functions matter.
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Why look at the 2w, instability? B

The 2w, instability

- often has the lowest intensity threshold
- threshold even lower for overlapped beams

 produces high temperature electrons (T, ~70keV)
- hence preheat concern even for fabs<1%!

e can occur in window, ablator, and liner plasmas
- for window plasma, see Sean Regan et. al.
- effect can be enhanced in the ablator and
liner plasmas with large beam spots

* is not included in the standard hohlraum Ipi modeling
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The threshold intensity due to density gradients
is rather low
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Examples: Be T,,=2.5 A,=.35

-L,=300 1>1.4x1074 W/cm?
-L,=1000  1>4x10"° W/cm?

Note that the intensity can swell significantly for obliquely
Incident light with angle of incidence ~ 60 degrees

Interesting question: how do speckles affect threshold?
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Threshold intensity due to collisions is rather low in low Z @
material, rather high in Au. LS

Collisional threshold ~ /max ~
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Examples; In=7 Z=4 (Be) T,,~2.5 A,=.35 o~1/3
I> 5x1013 W/cm?

In=7 Z=50 (Au) T,,=4 A,=.35 a~1/3
1>2x101° W/cm?
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For angles of incidence ~60 degrees, the threshold intensity is —
significantly reduced by swelling of the incident intensity "E‘

e Simple example---linear density profile n=n_z/L
* obliquely incident light turns at n=n_cos?6

* ¢=c0s20-z/L and v,, becomes small at the turning point
and so E swells

 Airy function solution

) 1/2
L
0°E o N = a)2 (z - Lcos’ 0)
0,)”2 77E =0 C
2 1/3 L 1/3
Lo _37¢087 e(w—L) Typically (w—) =10
E C ¢
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The classic signature of the 2w, instability is
3w,/2 emission E

Some Osaka experiments are illustrative
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A better understanding of T, generated by the .
2w, instability is needed ,._EF

In recent experiments, T, ,~60-70 keV attributed to 2w, instability
both in direct drive (LLE) and in hohlraum window plasmas (Regan, et. al.)

This T, is about what one might expect to be generated by the forward

directed plasma wave in the hot plasma limit
2

7 "V _85keV
Then hot >

However, early (strongly driven) 20, simulations suggested
33

keV Lasinsky,et.al., LLNL Annual Report 1980

T =110 2,
hot = 3x10"

For A =10"W /cm? 1,, = 35keV

More understanding of the dependences of T, on intensity

and T 4 is needed.
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The 2w, instability continues to be a concernin —
direct drive experiments ,,@

In recent “direct drive”experiments:
f.bs~1-15% into hot electrons with T, ~60-70 keV
Is attributed to the 20, instability

C. Stoeckl, et. al., PRL 90,235002-1, 2003

When above threshold in implosion experiments,
f..s~15% is inferred to generate the preheat
if the hot electron transport is diffusive, f,, .~1-2%

if their transport is more directional (Delettrez)

Note that net intensity is found to matter,
not single beam intensity
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The 2w, instability was observed for the first time §

hohlraums in Omega experiments (Regan, et. al.)
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submitted to PRL
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Hot electron (T, ~50+keV) generation was correlated with
blow-up of the window and with 3/2 o, emission.

hv > 40 keV, HXRD2
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The hot electron temperature becomes ~70keV for

the window hots E
Epot limits for early part First x-ray pulse
of NIF ignition pulse (from LEH window plasma)
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Portions of the inner beam skim plasma
with density near quarter-critical density
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We are now monitoring the “energy at risk” —
to the 2w, instability within the hohlraum ,,_EP

The energy at risk diagnostic
* monitors laser energy striking quarter critical density
with sufficient intensity to be above threshold for the
2w, instability

e was first developed to understand the window hots
at early time

* the collisional threshold is now included

Application to other times and places within the nominal
NIF ignition hohlraum is underway by Nathan Meezan
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Preliminary estimate for energy at risk in a —
recent point design: 4 kd from inner cones. ,,E

Cone | E @ n/4 (kJ) | E @ risk (kJ) Power @ risk for NIF ignition design
235 |15.4 3.3 E / R
/
\
30 |[25.5 0.7 S ’ X =
S / \
x /
44.5 |76.1 0.0 = / Inner quad \\
- /
50. |95.5 0.0 5 / 23.5° cone |||
8 / 30° cone
e 5 / =
E @ risk is power at n /4 x (I-l,;sn)/1 Q / =
Ithresh = max(lcoll! Igrad) 1
I.on (10'%)=0.46 Z3/T3
lgraq (10'%)=70.5*T/(L ,,,,*0.351) 0 I I T T )
E @ risk is laser energy, not hot e- energy ‘ -
If f,,.<10%, E, <400J Time (ns)

NIF hot e- spec @ peak ~6.4kJ @ 70 kev ~ Thresholds will be improved
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For common conditions accessed by the inner beams, the —
Raman-scattered light can excite the 2w, instability II_EJ

 stimulated Raman backscatter at n/n_=.1 and T_=2.5 keV
Wpe/0p=-316 W /wy=.633 w;~20m,,!

At somewhat higher density, n,<2w,, but encounters n,~2w,,
as the scattered light wave propagates to lower density plasma.

* Expect regime in which SRS becomes more absorptive, i.e.,
SRS-driven plasma waves makes hot electrons and the scattered
light wave excites the 2w, instability, making even hotter electrons.

* Possible saturation mechanism for strongly-driven SRS
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Excitation of the 2w, instability by the
Raman-backscattered light

Consider previous example: n/n_=.1 T.=2.5 keV ®,.=.633w,

Assume I ~.2l, 1,=5x10"*W/cm? I,~10"*W/cm? (r~20%)

SC

Threshold for excitation of the 2w, instability by the scattered light,
noting that A_.=.55um and taking a~1/3

» Gradient threshold (L=1mm) l1~2.5x10"3 W/cm?

* Collisional Threshold (Be) I-.~2.5x1072 W/cm?
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Various consequences entail @
~=J

* less Raman-scattered light measured but more hot electrons
 a higher temperature component (~70keV?)

* 3w/2 emission at ~.95w, (for this example)

* nonlinear reduction of level of SRS

lsc~lic? (2w, instability probably not this efficient)
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* Why look at the 2w, instability in ignition-scale hohlraums?
(gradient and collisional thresholds/ intensity swelling for
obliquely incident light/ hot electrons and preheat)

* Recent experimental feedback on the 2w, instability
(direct drive experiments/ window hot electrons in hohlraums-
S. Regan et. al.)

* The energy at risk to the 2w, instability at other times and
places in hohlraums is being assessed.

* New nonlinear physics: sometimes the Raman-scattered light
can excite the 2w, instability.

 Some preheat considerations: strong dependence on T, ;
energy distribution functions matter
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Only rather energetic electrons can penetrate the@

ablator of an ignition-scale capsule N
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T, ¢ Mmatters a lot!

fraction

Fraction above 200 keV
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Can the sensitivity of the preheat to T, be exploited? M_EF

* Win by finding ways to reduce T,
for example, by inducing short wavelength ion fluctuations

 The most dangerous portion of the heated electron distribution
may be under populated

t = 3600.0 oy

PIC simulation of Raman backscatter
| n/n_=.15, T,=2 keV

'\'\"\h , Note that distribution diminishes at E>4-5T, ,
| Wilks and Kruer (2005)

* Important that FFLEX have higher energy channels in order
to be more sensitive to the electrons with energy >200 keV
currently the highest energy channel is about 120 keV
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